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ABSTRACT 
There have been many efforts to use remotely sensed data to map or predict the production of honey. Many 

studies recommend that weather data are incorporated into the model. Here we assess the ability of satellite and 

weather data to predict the volume of honey produced from Corymbia calophylla (Myrtaceae) in southwest 

Australia. 

Utilising honey harvest data over 8 years, it was found that January NDVI could predict a ‘good’ harvest (more 

than 40 kg of honey harvested per hive) to 79% accuracy. Poor harvests (less than 20 kg of honey) and moderate 

harvests (between 20 and 40 kg of honey) were not distinguishable. 

Assessing weather for January and February showed that the weather data from January was highly influential. 

Good harvests occurred after a cool, dry January, moderate harvests after a warmer, wetter January and poor 

harvests associated with warmer, drier January. Using a decision-tree approach, the combination of January 

weather and NDVI classified good harvests to 90% accuracy. Classification into the three quality levels 

achieved 69% accuracy from the overlapping data for poor and moderate years. 

This study used monthly weather data. Addition of daily weather data and apiary health variables may improve 

the predictive accuracy. 

 

KEYWORDS: Remote sensing; Corymbia calophylla; honey; prediction 

1. INTRODUCTION 
In nectar productive regions, such as the biodiverse region of the southwest of Australia, beekeeping has 

blossomed in recent years, with the number of registered beekeepers growing from 660 in 2010 to over 3,000 in 

2019 [1] and significant international interest in local varietals. For example honey produced from Western 

Australian endemic species has some of the highest antimicrobial properties known for honey [2]. This has led 

to the ‘farm gate’ price for monofloral marri honey (produced by European honey bees (Apis mellifera) from the 

Corymbia calophylla trees) reaching prices of AUD 20/kg in 2018, compared to a decade earlier at of AUD 3/kg 

[3]. 

 

While annual honey yields from Corymbia calophylla forests can be exceptionally high, being over 70 kg per 

hive in some cases, it can also ‘fail’ in some seasons, with declines marri honey produced due to depleted 

flowering events [4]. In addition to the financial loss to the beekeeper, these failed years often result in bees 

starving and hive loss. Thus developing tools that can accurately predict flowering events in major nectar 

producing native species has major commercial benefits. 

 

Developing predictive modelling of honey flow is a major area of interest with high commercial value to 

apiarists worldwide. Since the advent of remote sensing, there have been efforts to use remotely sensed data to 

map or predict the timing and volume of honey production for different regions for predictive hive placement. 

 

For example, a European study of honey yield against temporal variations in the Normalized Difference 

Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor [5] 

showed a consistent time delay between the Start of Season (SOS) ‘green-up’ indicator and peak honey flow 
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time. The NDVI SOS measurement was shown to be a reasonably consistent predictor of peak honey flow 

timing (R2 = 0.76). However, no correlation was found between the SOS and the start of honey flow as this is 

more dependent on the appearance of flowers on isolated plants, whereas the peak honey flow is a result of more 

widespread flowering and therefore more closely tied to the MODIS sensor scale. 

 

In Australia, eucalypts across south-eastern Australia yielded a broad, qualitative correlation between changes in 

vegetation indices derived from MODIS data and honey yield data, with recommendations made for more 

detailed studies on local variations in floristic communities and the impact of climatic variables [6]. Similar 

work using the ‘BeeBox’ web-based portal [7] showed a stronger correlation between annual peak Enhanced 

Vegetation Index (EVI) from MODIS and Eucalyptus tricarpa (ironbark) winter honey flow over a 15-year 

period [8]. Again, this was a qualitative correlation and no quantitative model formed. 

 

Spectral indices for predicting canola yield have shown that NDVI and EVI actually decrease over canola 

(Brassica napus) fields at the peak of flowering, despite the increase in floral cover and biomass [9]. As a result, 

a ‘Normalized Difference Yellowness Index’ (or NDYI) was developed, which provided a better yield predictor 

for canola than NDVI [10]. 

 

Higher resolution airborne hyperspectral data were shown to have a high degree of accuracy in detecting 

flowering in native vegetation in Africa [11]. Using 60 cm pixel hyperspectral data from 400 – 990 nm, this 

study was 77 – 97% accurate in detecting peak flowering depending on the plant species involved. 

 

Previous spectral reflectance work by the authors has established the potential for direct detection of flowers in 

the peak nectar producing tree Corymbia calophylla (marri) using drone [12] and satellite platforms [13]. The 

success of the approach was influenced by the combination of the strong spectral separation of flowers of the 

target species from leaves and groundcover of these forests (see Figure 1), particularly in the visible and ultra-

violet (UV) spectra, combined with a lack of other large canopy dominant species that flower at the same time 

and the large volume of flowers of marri during the flowering season (see Figure 2). Using the high degree of 

spectral separation of marri flowers, an algorithm (Marri Flowering Index (MFI)) was developed using MODIS 

data (Band 10 for the visible spectrum and Band 8 for the near-UV) that separated poor honey yield years from 

moderate to good years with an 80% accuracy for a trial location. 

 

 
Figure 1: Median reflectance spectra collected from Corymbia calophylla forests using a handheld 

spectroradiometer. Blue line represents Corymbia calophylla flowers, green line represents leaves from 

Corymbia calophylla and other species present, orange line represents ground spectra. For a more complete 

discussion of the data, refer to Campbell and Fearns [13]. The full spectral data are available as a published 

dataset [14]. 
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Figure 2: Corymbia calophylla (marri) forest in bloom. 

The objective of this study was to test the hypothesis that satellite-borne remotely sensed data supplemented by 

the inclusion of local weather conditions has the ability to accurately predict marri flowering events across a 

range of vegetation communities and climatic regions for the southwest of Australia, a source of high quality 

mono-floral varietal honeys [2]. Marri trees typically flower over late summer (February is generally the prime 

honey producing month [15]) and an interrogation of the Western Australian state governments botanical 

database [15] shows that there are rarely other canopy species flowering at this time [13]. Developing such a 

predictive model of honey production provides an invaluable tool for apiarists to plan hive placement to 

maximise yield and apiary profitability. 

2. MATERIALS AND METHODS 

2.1 Honey harvest and other site data 

Honey harvest data were collected from across the south-west of Australia (see Figure 3), with over 350 km 

between the northern and southern sites. Most sites are clustered centrally, within 65 km of the Western 

Australian state capital city of Perth. Data were from two apiarists; one ‘commercial’ apiarist with 

approximately 700 hives and one ‘hobby’ apiarist with approximately 50 hives. Both apiarists use the Italian 

subspecies of Apis mellifera, with queen bees bred from the ‘Better Bee’ queen breeding program (based on 

Western Australia’s Rottnest Island). The ‘northern apiary sites’ (i.e. those more than 50 km north of Perth) are 

typically used for end of season harvests by the commercial apiarist as the marri trees typically finish flowering 

later in the season further north [16]. 
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Figure 3: Apiary site locations indicated by yellow markers. Site labels correspond to those listed in Table 1. 

Coordinates are in WGS84. 

Data included the number of hives at the apiary site for the season, dates the hives were moved onto and off the 

apiary site and the total weight of marri honey harvested from the apiary site for the season. This resulted in data 

from 58 harvests between 2010 – 2018 across 16 apiary sites, with not all apiary sites being utilised each year. 

Other apiary variables, such as queen bee quality and hive condition or strength (for example measures of adult 

bee population and brood, as per Delaplane, Van Der Steen [17]) and when the marri trees started to flower, 

were not recorded. All apiary sites were at least three kilometres from other known apiary sites, and therefore 

outside the forage range for honey bees when nectar is moderately to readily available from other apiary sites 

[18]. 

Harvest data were reduced to the average weight of honey harvested per hive per year per apiary site. The 

summary of the honey harvest data presented in Table 1 highlights the difficulty in obtaining continuous, or at 

least annual, data for all sites. Not all apiary sites are utilised every year, however the absence of data should not 

be interpreted as implying likely low yield. For example, sometimes a site is not utilised because better yield is 

expected elsewhere. The practice of apiarists locating hives at the sites expecting higher yields each year limits 

the number of data points representing failed honey flow due to no flowers, thus limiting the potential for 

verification of the “null result” in the satellite-derived data. There are four “null results” in the honey harvest 

data used, all of which occur from 2010 - 2012. It is important to note that in many years, the harvest data 

ranged from poor to good depending on the location, indicating a high spatial variability in nectar production for 

a given year across different locations. 
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Table 1: Summary of average marri honey harvest per hive by apiary site and year, with the number of hives 

at the apiary site in brackets after the weight. Red = poor harvest (< 20 kg per hive), yellow = moderate 

harvest (20 - 40 kg per hive) and green = good harvest (> 40 kg per hive) 

Site 2010 2011 2012 2013 2014 2015 2016 2017 2018 

101 

Not 

used 

Not 

used 

Not 

used 

Not 

used 

Not 

used  39.3 (2)   20.3 (4)   12.5 (4)   35.0 (4)  

102 

Not 

used 

Not 

used 

Not 

used 

Not 

used 

Not 

used  36.3 (2)  0.0 (4)  4.0 (4)   30.0 (4)  

103 

Not 

used 

Not 

used 

Not 

used 

Not 

used 

Not 

used 

Not 

used  6.0 (3)  10.0 (4)   28.1 (5)  

201 

 Not 

used  

 Not 

used  

 Not 

used  

 49.6 

(112)  

 Not 

used  

 52.2 

(112)  

 Not 

used  

 Not 

used  

 Not 

used  

202 

 Not 

used  

 Not 

used  

 Not 

used  

 65.6 

(112)  

 Not 

used  

 45.5 

(112)  

 Not 

used  

 Not 

used  

 Not 

used  

204 

0.0 

(112) 

 16.1 

(112)  

 Not 

used  

 71.0 

(112)  

 Not 

used  

 Not 

used  

 Not 

used  

 26.8 

(112)  

 40.2 

(112)  

205 

16.1 

(112) 

0.0 

(112) 

 Not 

used  

 Not 

used  

 Not 

used  

 48.2 

(112)  

 Not 

used  

 13.4 

(112)  

 38.8 

(112)  

206 

 34.8 

(112)  

 Not 

used  

0.0 

(112) 

 18.8 

(112)  

 Not 

used  

 29.5 

(112)  

 Not 

used  

 Not 

used  

 16.1 

(112)  

207 

 37.5 

(112)  

 Not 

used  

0.0 

(112) 

 18.8 

(112)  

 Not 

used  

 29.5 

(112)  

 Not 

used  

 Not 

used  

 16.1 

(112)  

208 

18.0 

(224) 

 Not 

used  

 8.0 

(224)  

 16.1 

(112)  

 16.1 

(112)  

 12.1 

(112)  

 Not 

used  

 Not 

used  

 16.1 

(112)  

209 

 25.4 

(112)  

 Not 

used  

 Not 

used  

 18.8 

(112)  

 Not 

used  

 20.1 

(112)  

 Not 

used  

 Not 

used  

 16.1 

(112)  

210 

 34.8 

(112)  

 Not 

used  

 Not 

used  

 56.3 

(112)  

 Not 

used  

 67.0 

(112)  

 Not 

used  

 Not 

used  

 Not 

used  

211 

16.1 

(112) 

 Not 

used  

 Not 

used  

 49.6 

(112)  

 Not 

used  

 52.2 

(112)  

 Not 

used  

 Not 

used  

 Not 

used  

212 

 Not 

used  

 8.9 

(112)  

 Not 

used  

 42.9 

(112)  

 Not 

used  

 32.1 

(112)  

 Not 

used  

 11.6 

(112)  

 26.8 

(112)  

213 

 Not 

used  

 Not 

used  

 17.1 

(112)  

 Not 

used  

 Not 

used  

 Not 

used  

 Not 

used  

 44.2 

(112)  

 Not 

used  

Annual 

average 22.8 8.3 6.3 40.8 16.1 38.6 8.8 17.5 26.3 

 

Previous work on correlating MODIS data with marri honey harvests by Campbell and Fearns [12] utilised an 

apiary site surrounded in all directions by several kilometres of relatively uniform, mature marri forest. It was 

expected that this would show the greatest change due to flowering intensity from flowers resulting in a larger 
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proportion of the pixel’s area with the floral signature compared with mixed land-use areas. However not all 

apiary sites have such consistent forest coverage. 

To assess the impact of canopy cover on the vegetation indices and the MFI metric across a broader range on 

canopy cover densities than the previous study (i.e. including younger regrowth forest and partially cleared land 

rather than only mature forest), vegetation structure products produced by AusCover [19] were used to represent 

the mature canopy cover for each site. The AusCover vegetation structure data were derived from remotely 

sensed Landsat data, resulting in a ground resolution of approximately 30 m. While the uncertainty for the 

vegetation cover has been proven to be as high as 20% [20], the AusCover data were considered sufficiently 

accurate to distinguish complete forest cover from partially cleared land or land with some remnant trees. 

With flowering marri trees being from 10 – 40 m high depending on age [21], the proportions of plant cover for 

the 10 – 30 m and > 30 m intervals were summed (the AusCover dataset provides fraction of vegetation cover 

from between 0 – 5 m height, 5 – 10 m height, 10 – 30 m height and greater than 30 m height). As the typical 

forage range for honey bees with moderate nectar availability is 1 – 2 km [18], the AusCover mean mature tree 

canopy cover data from this process were averaged to the nearest 1 km MODIS pixel extents to assist with 

assessing the relative impact of changes in vegetation phenology per pixel. Examples of this process are shown 

in Figure 4. 

 

Figure 4: Comparison of aerial imagery (left panels) with AusCover vegetation height data at ~ 30 m spatial 

resolution (middle panels) and AusCover mean per (1km) MODIS pixel (right panels) for forest (top row) 

and mixed land use (bottom row) apiary locations. 

2.2  MODIS derived indices and honey yields 

Satellite-derived data from the MODIS sensor were used in this study in preference to other sensors with higher 

spatial resolution (e.g. Landsat or Sentinel-2) for the following reasons: 

 The narrower spectral bands for MODIS compared with Landsat and their specific wavelengths result 

in a significantly higher spectral separation for marri flowers [13]. 

 The daily temporal resolution of MODIS, compared with the 16-day temporal resolution of Landsat, is 

more suited to accurately measuring maximum values over a 1-month period. 

 While Sentinel 2 has a better temporal resolution than Landsat (5 days versus 16 days), this data is only 

available from after March 2017. This gives two years of Marri harvest data to analyse. 
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Previous studies correlating MODIS NDVI and EVI to honey harvests in the southeast Australian tree 

Eucalyptus tricarpa (ironbark) showed a degree of qualitative correlation between vegetation indices peaks in 

winter and the peak quarterly honey production for the same site [8]. However, no quantitative assessment was 

performed. In addition, marri trees are a late summer to early autumn flowering species (the annual low period 

for NDVI in Australia). It was expected that seasonal variations in vegetation indices would be larger than 

spectral variations due to flower coverage, as demonstrated by Campbell and Fearns [13], who estimated that 

NDVI and EVI require minimum canopy cover of 50% and 60% respectively for changes in flower coverage to 

be detectable. Even at 100% canopy cover, it was estimated in this previous study that these two indices still 

require 15% and 44% flower coverage of the pixel respectively for detection of flowers to be viable. 

Over the apiary sites used, the average canopy cover was only 22%. Accordingly, three sites with the highest 

canopy coverage and years of honey harvest data were initially selected to test the ability of NDVI and EVI to 

detect marri flowers. These three sites had canopy coverages ranging from 38% to 53%. The remaining 13 sites 

with lower canopy coverage were then assessed. 

Maximum monthly NDVI and EVI data for these sites were calculated from the MODIS 1 km pixel size 

database (as an indication of the highest level of canopy chlorophyll for the month [22]).These maximum values 

were extracted from the same MODIS pixels used to calculate the Marri Flowering Index (MFI), with the MFI 

calculated by dividing the value of MODIS Band 10 by Band 8, and as described in Campbell and Fearns [13]. 

2.3 Weather data 

To achieve a greater understanding of the causes of the variations in honey harvest weight, average maximum 

temperature and monthly rainfall data for January and February (the month immediately preceding the main 

flowering period and the month of the main flowering period [21]) were obtained from the Australian 

Government’s Bureau of Meteorology (BOM) website (http://www.bom.gov.au/climate/data/) for the weather 

stations closest to the apiary sites. Note that the distance between the source of weather data and harvest data 

was up to 40 km in some cases as apiary sites can be situated in remote, unpopulated locations. 

These weather data were plotted both against the honey harvest weight data for each site and year, as well as 

plotted against each other, with points coloured by harvest quality to locate multiple weather factors that work 

together to affect the honey harvest quality. 

3. RESULTS 

3.1 MODIS derived indices and honey yields 

With the increase in flower coverage over the flowering period resulting in less photosynthetically active 

vegetation at the top of the canopy, it would be expected that if the vegetation indices were directly detecting the 

presence of flowers then the vegetation index would decrease due to vegetation being occluded by flowers (as 

per spectral separation analysis by Sulik and Long [9] and Campbell and Fearns [13]). However, as the February 

NDVI data in Figure 5 show, there is a weak positive correlation between February maximum NDVI and marri 

honey harvest weight (R = 0.73). 

 

Figure 5: MODIS NDVI versus annual marri honey yield 
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The correlation between NDVI and honey harvest is stronger in January (R = 0.88) with increased chlorophyll 

content, as measured by the NDVI data, linked to more active green floral bud formation in the pre-flowering 

stage with resultant higher flowering, nectar production and concomitant increase in honey harvest. Marri buds 

are held in terminal corymbs and can be visible as a lighter green ‘canopy’ over the tree compared with marri 

leaves. 

The January data shows that data points can be divided into two parts based on marri honey harvests above or 

below 45 kg per hive for the season. Below this harvest level there is a very poor correlation between honey 

harvest and NDVI (R = 0.40). Above this harvest (the four largest honey harvests), there is a stronger linear 

correlation between honey harvest and the January maximum NDVI (R = 0.99) (Figure 6). It is possible that for 

lower nectar production years, the variation in chlorophyll content is not sufficient to be measurably different by 

MODIS NDVI. For years with exceptionally high nectar production, the chlorophyll rises above the detection 

threshold and this linear relationship is measurable. 

 

Figure 6: Two zones of different relationships between January NDVI and annual marri honey yield 

The data analysis was then extended to include all honey harvest data points, regardless of degree of canopy 

cover. The result, shown in Figure 7, indicates a weak positive correlation between January NDVI and honey 

harvest (R = 0.46). The box plot of the data in Figure 7 does show that ‘good’ harvest years (honey harvest 

weight > 40 kg) have generally higher January NDVI. This was confirmed by an ANOVA analysis, which 

showed that there is no significant difference between the January MODIS NDVI data for poor (< 20 kg) and 

moderate harvest amounts (20 – 40 kg) whereas good harvests were separable from poor and moderate harvests 

(<0.05 for good vs moderate and good vs poor years but not moderate vs poor years). Note that these ranges 

for poor, moderate and good harvest years are based on the average weight of honey harvested per ‘box’, or full-

depth super (the upper boxes in a hive where honey is deposited), of honey (average weight of 20 kg per ‘box’ 

[16]). 

 

Figure 7: Maximum January MODIS NDVI for all honey harvest data points from Error! Reference source 

not found. 
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To assess the effect of site or year specific effects, the data in Figure 7 were grouped into apiary sites and years 

(Figure 8 and Table 2). These groups show that there is significantly better relationship between harvest volume 

and NDVI by year than by site (median R2 0.75 by year vs 0.13 by site), and that the positive relationships 

dominate by year as the harvest volume increases (there are no negative correlations above 45 kg per hive 

harvest weight). However, the majority of the relationship between NDVI and honey harvest by year is likely to 

be a result of increasing NDVI with increasing canopy cover rather than from the honey harvest itself (see 

Figure 9).  

 

 

Figure 8: Maximum January NDVI vs honey harvest per hive, grouped into years (left frame) and apiary 

sites (right frame) with linear regression trendlines shown 

Table 2: NDVI by year and site linear regression summary 

YEAR R2 GRADIENT  SITE R2 GRADIENT 

2010 0.93 -0.012  101 0.04 -0.0004 

2011 0.71 0.012  102 0.23 0.0008 

2012 0.94 0.010  103 0.98 0.0022 

2013 0.78 0.006  201 N/A 0.0208 

2015 0.18 -0.002  202 0.03 -0.0025 

2016 0.42 -0.003  204 0.03 -0.0002 

2017 0.75 0.008  205 0.37 0.0010 

2018 0.75 0.012  206 0.10 -0.0002 

MEDIAN 0.75 0.007  207 0.03 -0.0002 

    208 0.32 0.0028 

    209 0.07 0.0019 

    210 0.61 0.0008 

    211 N/A 0.0056 

    212 0.16 0.0008 

    213 N/A -0.0021 

    MEDIAN 0.13 0.0008 
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Figure 9: January maximum NDVI versus mature canopy cover (AusCover > 10 m height) 

As MFI and honey harvest weight were reported by Campbell and Fearns [13] as being linked, the MFI was 

compared to the honey harvest data used for NDVI and EVI evaluation. A plot of MFI vs honey harvest data 

(Figure 10a) shows no correlation across the full range of harvest weights. 

Given the range of canopy coverage as derived from AusCover data (2.6% – 61.9%), the MFI was multiplied by 

the canopy coverage in an effort to enhance the effect that canopy cover has on the index (Figure 10b). This 

scaled MFI (sMFI) showed a similar result to the maximum NDVI in January, with low correlation for poor to 

moderate years (<40 kg per hive) and generally higher sMFI for good years (>40 kg per hive). This is more 

apparent in the box plots in Figure 11, with the sMFI for good years being noticeably higher. However, an 

ANOVA analysis of the sMFI for the three different groups of harvest weight only yielded a value of  < 0.05 

for moderate vs good years (the NDVI ANOVA analysis gave this result for both poor vs good and moderate vs 

good years). 

 

Figure 10: Marri Flowering Index (MFI) and scaled Marri Flowering Index (sMFI) vs honey harvest weight 

 

Figure 11: Box plots of MFI and sMFI for different honey harvest weights 
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The assessment of linear regression for sMFI when grouped by year and site (Figure 12 and Table 3) again 

showed poor correlation between sMFI and honey harvest weight. Indeed, the median gradient for sMFI 

grouped by site in Figure 12 and Table 3 is negative, indicating that there is a negative correlation between 

sMFI and honey harvest weight. It may be that MFI can be effective in some cases where there is a high 

proportion of canopy cover (as found by Campbell and Fearns [13]). However the signal may too close to the 

noise floor for the MODIS data to be used reliably across areas of differing canopy covers, especially those 

areas with a lower proportion of canopy cover. 

 

Figure 12: Maximum February sMFI grouped into years and apiary sites with linear regression trendlines 

Table 3: sMFI by year and site linear regression summary 

YEAR R2 GRADIENT  SITE R2 GRADIENT 

2010 0.51 1.69  101 0.03 0.056 

2011 0.01 -0.27  102 0.23 -0.124 

2012 0.06 0.18  103 0.98 -0.368 

2013 0.62 1.26  201 N/A -2.907 

2015 0.12 0.65  202 0.28 0.267 

2016 0.06 0.18  204 0.01 0.016 

2017 0.35 -0.79  205 0.38 -0.113 

2018 0.05 0.66  206 0.09 0.113 

MEDIAN 0.09 0.42  207 0.04 0.018 

    208 0.25 -0.074 

    209 0.09 0.301 

    210 0.63 -0.119 

    211 N/A -0.878 

    212 0.18 -0.134 

    213 N/A -0.185 

    MEDIAN 0.21 -0.113 

 

3.2 Relationships between honey yields and weather data 

Honey harvest weight versus weather data are shown in Figure 13, with broad trends indicated but there is still 

overlap between each weather metric and the harvest quality categories (poor < 20 kg, moderate 20 – 40 kg and 

good > 40 kg). This is borne out by the ANOVA analysis of the data, which is summarised in Table 4. The only 

weather data that has a statistically significant difference is the January median maximum temperature (i.e. the 

median of the daily maximum temperatures in January). For this dataset, good harvest years do not exceed 31C 

degrees whereas poor to moderate harvest years range from 30.5C to 37.0C. While there are other clusters in 

the weather data (circled in red in Figure 13: higher January rainfall for moderate harvests and higher February 

rainfall for poor harvests), these only apply to some data points for a given harvest category and therefore are 

not the only factor influencing harvest quality. 
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Table 4: Monthly weather vs honey harvest ANOVA -value results. Note that significant results (where  < 

0.05) are highlighted in green. 

COMPARISON JANUARY 

TEMPERATURE 

JANUARY 

RAINFALL 

FEBRUARY 

TEMPERATURE 

FEBRUARY 

RAINFALL 

POOR VS MOD  > 0.05  > 0.05  > 0.05  > 0.05 

POOR VS GOOD  < 0.05  > 0.05  > 0.05  > 0.05 

MOD VS GOOD  < 0.05  > 0.05  > 0.05  > 0.05 

 

 

Figure 13: Monthly weather data vs honey harvest weight. Each data point is for a harvest site. Background 

is coloured by poor, moderate and good harvest classifications (red, yellow and green respectively) 

To assess the effect of multiple weather and vegetation index variables on harvest quality, a series of cross-plots 

were produced, with the harvest quality grouped by colour. The results, shown in Figure 14, show the potential 

for combinations of measurements to improve on Boolean classification results compared to single variables 

alone (see combinations indicated in Figure 14). Interestingly, there are clusters and trends for the good and 

moderate harvest quality categories, but the poor harvest quality category is spread across the full range of 

results for all metrics except January rainfall. This indicates that there are a number of conditions that can cause 

harvest of poor quality, but only a few conditions that may support moderate or good quality harvests. 

4. DISCUSSION 

4.1 MODIS derived indices and honey yields 

The correlations between NDVI and honey yield show that the increased vegetation activity associated with 

increased nectar production has a larger effect than flower coverage alone (i.e. direct detection of increased 

flower coverage with the NDVI data is not feasible within this dataset). Comparison of the ANOVA analysis of 

NDVI and scaled Marri Flowering Index (sMFI) compared to honey harvests showed that January NDVI is a 

more reliable indicator of honey harvest weight than the sMFI. 
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To assess the accuracy of an NDVI cutoff point in classifying a year as good vs moderate or poor harvest 

quality, the percentages of years classified correctly for NDVI ranging between 0.4 and 0.6 were calculated. A 

cutoff at an NDVI of 0.5 was found to be the most accurate, with 79% of the ‘good’ years being above this point 

and 77% of the other years being below. Thus it is possible to predict honey harvest from satellite remotely 

sensed data, although the prediction is not reliable across all canopy covers nor harvest qualities. 

 

 

Figure 14: Cross-plots of weather and vegetation index data vs harvest quality. Red dashed lines highlight 

areas where good or moderate harvest datapoints cluster together well. 

4.2 Relationships between honey yields and weather 

The effectiveness of using multiple weather metrics to assign a honey yield quality was quantitatively tested by 

calculating the classification accuracy of different combinations of metrics, with the highest preceding this being 

a 78% accuracy in classifying good quality harvests using January maximum NDVI (note that moderate and 

poor quality harvest years were unable to be separated using NDVI). As summarised in Table 5, greater 

predictive accuracy is obtained using a combination of NDVI, median maximum temperature and monthly 

rainfall for January to classify a harvest as either good quality or of lower quality (accuracy of 90%). Of the 58 

datapoints, two moderate quality years are classified as good years and four good years are classed as moderate 
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years. Adjusting any of the three criteria to improve the number of good years that are correctly classified also 

increases the number of poor and moderate harvest years within the criteria, reducing the overall accuracy. 

After classification of good quality harvests, the next most accurate prediction is classification of harvests better 

than poor quality (i.e. moderate or good quality years), with at an accuracy of 72%. This uses a combination of 

the good quality harvest classification criteria as well as a set range of January temperature to January NDVI 

ratios for moderate years (see the moderate harvest quality range indicated by the red oval in Figure 14). As 

seen in Figure 13 and Figure 14, there is significant overlap between poor and moderate quality harvest years in 

the NDVI and weather metrics that is a limiting factor in the classification accuracy. 

Moderate harvest quality years and poor quality harvest years were classified to 66% and 69% accuracies 

respectively, using a combination of the good harvest quality criteria and higher quality indices than poor 

harvest. As discussed above, there is significant overlap with the metrics used for poor harvest quality years and 

moderate harvest quality years, that limits the effectiveness of a Boolean classification approach. It may be that 

more detailed analysis of daily temperature, rainfall and/or NDVI data over the pre-flowering period may 

achieve better results than the monthly figures. 

Attempts to create a combined classification approach for all three harvest quality levels yielded at best a 

classification accuracy of 69%, mostly due to the difficulty of separating moderate and poor harvest years. 

The outcome of the inclusion of the weather data into the predictive model shows that the honey harvest weight 

prediction model based on satellite remotely sensed data improved the model’s predictive capability. As only 

monthly weather data were used, it may be that a more detailed analysis of daily weather data may achieve 

greater accuracies for these poor and moderate harvest quality years. Greater predictability may also be achieved 

if apiary variables were incorporated in future models (such as queen bee quality and an index of hive strength 

as proposed by Delaplane, Van Der Steen [17]).  

Table 5: Multivariate classification accuracy summary 

TARGET METRIC(S) ACCURACY TARGET METRIC(S) ACCURACY 

GOOD 

HARVESTS 

JAN NDVI > 0.5 79% MODERATE 

HARVESTS 

JAN NDVI >  

(-0.042*JAN 

TEMP+1.75) 

45% 

JAN NDVI > 0.5 

AND IF 

JAN TEMP < 31.5 

83% JAN NDVI <  

(-0.042*JAN 

TEMP+1.75) 

AND IF 

JAN NDVI >  

(-0.042*JAN 

TEMP+1.90) 

AND IF 

JAN NDVI < 0.5 

AND IF 

JAN TEMP > 31.5 

AND IF 

JAN RAIN > 40 

66% 

JAN NDVI > 0.5 

AND IF 

JAN TEMP < 31.5 

AND IF 

JAN RAIN < 40 

90% 

TARGET METRIC(S) ACCURACY TARGET METRIC(S) ACCURACY 

> POOR 

HARVEST 

JAN NDVI > 0.5 

AND IF 

JAN TEMP < 31.5 

AND IF 

JAN RAIN < 40 

AND IF 

JAN NDVI <  

(-0.042*JAN 

TEMP+1.75) 

72% POOR 

HARVEST 

JAN NDVI > 0.5 

OR IF 

JAN TEMP < 31.5 

OR IF 

JAN RAIN < 40 

69% 
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AND IF 

JAN NDVI >  

(-0.042*JAN 

TEMP+1.90) 

5. CONCLUSIONS 
Building on previous work in Europe and south-east Australia correlating satellite-derived vegetation indices to 

honey yields (summarised in the introduction sector of this paper), an assessment of NDVI versus honey harvest 

weight found a strong correlation between higher January MODIS NDVI and good quality marri honey harvests 

(> 40 kg of honey per hive). Using a Boolean classification approach with a criterion of maximum January 

NDVI > 0.5, and honey harvest data from 2010 – 2018 in southwest Australia across 16 wide-ranging apiary 

sites were classified correctly with 78% accuracy. 

Incorporating climatic variables, particularly January monthly rainfall and median maximum daily temperature, 

with NDVI improved the classification of good quality harvest years to 90%. However, moderate and poor 

harvest quality years had a larger overlap of the weather and NDVI data for compared with good quality harvest 

years.  

The results of this study will allow beekeepers to more accurately predict honey harvest quality prior to the start 

of honey production and adjust their preparation and site selection accordingly. 

 The approach used here in developing the predictive model can be readily applied to honey harvests from other 

floral sources, allowing beekeepers from other regions or countries to develop models suited to their own 

particular floral assemblages and climates. 
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